AGE/RAGE regulates the epithelial-mesenchymal transition and stemness maintenance of colorectal cancer cells

摘 要
目的:探讨晚期糖基化终末产物(advanced glycation end products,AGEs)对结直肠癌HCT116细胞上皮-间质转化及肿瘤细胞干性的影响,及其可能的作用机制。
方法:200 μg/mL AGEs和200 μg/mL AGEs联合50 μmol/L磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3K)特异性抑制剂LY294002处理HCT116细胞后,分别应用CCK-8法、划痕愈合实验、Transwell小室法、克隆形成实验和肿瘤细胞成球实验检测HCT116细胞的增殖、迁移、侵袭、克隆形成和细胞成球能力。200 μg/mL AGEs和200 μg/mL AGEs联合50 μmol/L LY294002处理HCT116细胞球后,应用Transwell小室法检测细胞的侵袭能力,FCM法检测CD133+细胞球所占比例,蛋白质印迹法检测HCT116细胞球中CD133、基质金属蛋白酶2(matrix metalloproteinase-2,MMP-2)和MMP-9蛋白的表达。不同浓度AGEs、200 μg/mL AGEs和200 μg/mL AGEs联合50 μmol/L LY294002处理HCT116细胞后,应用蛋白质印迹法检测细胞中晚期糖基化终末产物受体(receptor of advanced glycation end products,RAGE)、E-cadherin、N-cadherin、vimentin、Snail、PI3K、磷酸化PI3K(phosphorylated PI3K,p-PI3K)、蛋白激酶B1(protein kinase B1,PKB1,又称Akt1)和磷酸化Akt1(phosphorylated Akt1,p-Akt1)的表达。
结果:200 μg/mL AGEs处理后,HCT116细胞的增殖、迁移、侵袭、克隆形成和细胞成球能力均明显增强(P<0.01,P<0.05,P<0.01,P<0.01,P<0.05),而50 μmol/L LY294002处理后这一作用被明显抑制(P<0.05,P<0.05,P<0.01,P<0.01,P<0.05)。AGEs处理后,HCT116细胞球的侵袭能力增强(P<0.01),CD133+细胞球所占比例增加(P<0.05),CD133、MMP-2和MMP-9蛋白的表达水平均明显上调(P值均<0.05);而50 μmol/L LY294002处理后这一作用被明显抑制(P<0.01,P<0.05,P值均<0.05)。不同浓度AGEs处理后,HCT116细胞中RAGE蛋白的表达水平上调(P<0.05)。200 μg/mL AGEs处理后,HCT116细胞中p-PI3K、p-Akt1、N-cadherin、vimentin和Snail蛋白表达水平均上调(P值均<0.05),E-cadherin蛋白表达水平下调(P<0.05);而50 μmol/L LY294002处理后,HCT116细胞中p-PI3K、p-Akt1、N-cadherin、vimentin、Snail和E-cadherin的表达水平出现相反变化(P值均<0.05)。
结论:AGEs激活RAGE信号通路,可促进结直肠癌HCT116细胞的增殖、迁移、侵袭和克隆形成能力,并维持肿瘤细胞干性,其机制可能与AGE/RAGE/PI3K-Akt信号通路介导的上皮-间质转化有关。










Abstract
Objective: To explore the effects of advanced glycation end products (AGEs) on the epithelial-mesenchymal transition (EMT) and stemness maintenance of colorectal cancer HCT116 cells and its possible mechanism.
Methods: The abilities of proliferation, migration, invasion, clone formation and sphere formation of HCT116 cells after treatment with 200 μg/mL AGEs and 200 μg/mL AGEs in combination with 50 μmol/L phosphatidylinositol-3 kinase (PI3K)-specific inhibitor LY294002 were detected by CCK-8, wound-healing assay, Transwell chamber assay, clone formation assay and sphere formation assay, respectively. After treatment with 200 μg/mL AGEs and 200 μg/mL AGEs in combination with 50 μmol/L LY294002, respectively, the ability of invasion and the proportion of CD133+ sphered HCT116 cells as well as the expressions of CD133, matrix metalloproteinase-2 (MMP-2) and MMP-9 in sphered HCT116 cells were detected by Transwell chamber assay, FCM and Western blotting, respectively. The expressions of the receptor of advanced glycation end products (RAGE), E-cadherin, N-cadherin, vimentin, Snail, PI3K, phosphorylated PI3K (p-PI3K), protein kinase B1 (PKB1, Akt1) and phosphorylated Akt1 (p-Akt1) in sphered HCT116 cells after treatment with different concentrations of AGEs, 200 μg/mL AGEs and 200 μg/mL AGEs in combination with 50 μmol/L LY294002 respectively were detected by Western blotting.
Results: The abilities of migration, invasion, clone formation and sphere formation of HCT116 cells after treatment with 200 μg/mL AGEs were improved (P < 0.01, P < 0.05, P < 0.01, P < 0.01, P < 0.05), and these effects were inhibited by 50 μmol/L LY294002 (P < 0.05, P < 0.05, P < 0.01, P < 0.01, P < 0.05). After treatment with AGEs, the ability of invasion and the proportion of CD133+ sphered HCT116 cells were increased (P < 0.01, P < 0.05), and the expression levels of CD133, MMP-2 and MMP-9 were up-regulated (all P < 0.05), whereas these effects were opposite by 50 μmol/L LY294002 (P < 0.01, P < 0.05, all P < 0.05). The expression level of RAGE in HCT116 cells after treatment with different concentrations of AGEs was up-regulated (P < 0.05). After treatment with 200 μg/mL AGEs, the expression levels of p-PI3K, p-Akt1, N-cadherin, vimentin and Snail proteins were up-regulated (all P < 0.05), whereas the expression level of E-cadherin protein was down-regulated (P < 0.05); but these effects were opposite by 50 μmol/L LY294002 (all P < 0.05).
Conclusion: AGE activates the RAGE signal pathway and improves the abilities of proliferation, migration, invasion, clone formation and stemness maintenance of colorectal cancer HCT116 cells, and this mechanism may be related to EMT mediated by AGE/RAGE/PI3K-Akt signal pathway.
中图分类号 R735.34 DOI 10.3781/j.issn.1000-7431.2017.11.054
所属栏目 基础研究
基金项目
收稿日期 2017/2/9
修改稿日期 2017/4/20
网络出版日期

作者单位点击查看

引用该论文: TANG Kang,CHENG Yong. AGE/RAGE regulates the epithelial-mesenchymal transition and stemness maintenance of colorectal cancer cells[J]. Tumor, 2017, 37(6): 576~586
唐康,程勇. AGE/RAGE参与结直肠癌细胞上皮-间质转化及肿瘤干性的调控[J]. 肿瘤, 2017, 37(6): 576~586
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好






参考文献
【1】Singh R, Barden A, Mori T, et al. Advanced glycation end-products: a review[J]. Diabetologia, 2001, 44(2):129-146.
【2】Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response[J]. J Mol Med (Berl), 2009, 87(3):235-247.
【3】Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biol, 2014, 2:411-429.
【4】Meghnani V, Vetter SW, Leclerc E. RAGE overexpression confers a metastatic phenotype to the WM115 human primary melanoma cell line[J]. Biochim Biophys Acta, 2014, 1842(7):1017-1027.
【5】Sharaf H, Matou-Nasri S, Wang Q, et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231[J]. Biochim Biophys Acta, 2015, 1852(3):429-441.
【6】Dahlmann M, Okhrimenko A, Marcinkowski P, et al. RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis[J]. Oncotarget, 2014, 5(10):3220-3233.
【7】Chen RC, Yi PP, Zhou RR, et al. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines[J]. Mol Cell Biochem, 2014, 390(1/2):271-280.
【8】Elangovan I, Thirugnanam S, Chen A, et al. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth[J]. Biochem Biophys Res Commun, 2012, 417(4):1133-1138.
【9】He M, Kubo H, IshizawA K, et al. The role of the receptor for advanced glycation end-products in lung fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(6):L1427-1436.
【10】Ko SY, Ko HA, Shieh TM, et al. Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro[J]. PLoS One, 2014, 9(10):e110542.
【11】Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6):1420-1428.
【12】Cao H, Xu E, Liu H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review[J]. Pathol Res Pract, 2015, 211(8):557-569.
【13】Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE)[J]. J Clin Invest, 2001, 108(12):1853-1863.
【14】Guraya SY. Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review[J]. World J Gastroenterol, 2015, 21(19):6026-6031.
【15】Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease[J]. FASEB J, 2004, 18(1):176-178.
【16】赵俊卿, 李云峰, 杨之斌. 肿瘤细胞发生细胞上皮-间质转变机制的研究[J]. 肿瘤, 2010, 30(10):890-893.
【17】Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis[J]. Proc Natl Acad Sci U S A, 2001, 98(20):10983-10985.
【18】Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma[J]. Proc Natl Acad Sci U S A, 1987, 84(14):5034-5037.
【19】Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines[J]. Cancer Res, 2003, 63(9):2172-2178.
【20】Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells[J]. Oncogene, 2004, 23(43):7274-7282.
【21】Ailles LE, Weissman IL. Cancer stem cells in solid tumors[J]. Curr Opin Biotechnol, 2007, 18(5):460-466.
【2】Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response[J]. J Mol Med (Berl), 2009, 87(3):235-247.
【3】Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biol, 2014, 2:411-429.
【4】Meghnani V, Vetter SW, Leclerc E. RAGE overexpression confers a metastatic phenotype to the WM115 human primary melanoma cell line[J]. Biochim Biophys Acta, 2014, 1842(7):1017-1027.
【5】Sharaf H, Matou-Nasri S, Wang Q, et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231[J]. Biochim Biophys Acta, 2015, 1852(3):429-441.
【6】Dahlmann M, Okhrimenko A, Marcinkowski P, et al. RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis[J]. Oncotarget, 2014, 5(10):3220-3233.
【7】Chen RC, Yi PP, Zhou RR, et al. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines[J]. Mol Cell Biochem, 2014, 390(1/2):271-280.
【8】Elangovan I, Thirugnanam S, Chen A, et al. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth[J]. Biochem Biophys Res Commun, 2012, 417(4):1133-1138.
【9】He M, Kubo H, IshizawA K, et al. The role of the receptor for advanced glycation end-products in lung fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(6):L1427-1436.
【10】Ko SY, Ko HA, Shieh TM, et al. Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro[J]. PLoS One, 2014, 9(10):e110542.
【11】Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6):1420-1428.
【12】Cao H, Xu E, Liu H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review[J]. Pathol Res Pract, 2015, 211(8):557-569.
【13】Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE)[J]. J Clin Invest, 2001, 108(12):1853-1863.
【14】Guraya SY. Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review[J]. World J Gastroenterol, 2015, 21(19):6026-6031.
【15】Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease[J]. FASEB J, 2004, 18(1):176-178.
【16】赵俊卿, 李云峰, 杨之斌. 肿瘤细胞发生细胞上皮-间质转变机制的研究[J]. 肿瘤, 2010, 30(10):890-893.
【17】Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis[J]. Proc Natl Acad Sci U S A, 2001, 98(20):10983-10985.
【18】Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma[J]. Proc Natl Acad Sci U S A, 1987, 84(14):5034-5037.
【19】Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines[J]. Cancer Res, 2003, 63(9):2172-2178.
【20】Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells[J]. Oncogene, 2004, 23(43):7274-7282.
【21】Ailles LE, Weissman IL. Cancer stem cells in solid tumors[J]. Curr Opin Biotechnol, 2007, 18(5):460-466.
相关信息