登录    
  
首页 > 期刊论文 > 论文摘要
外泌体在上皮-间质转化和肿瘤转移中作用的研究进展
         
Multifaceted roles of exosomes in epithelial-mesenchymal transition and tumor metastasis

摘    要
构成肿瘤微环境的细胞和肿瘤细胞本身可释放的大量外泌体,这些外泌体携带核酸、蛋白质和脂质等物质,可通过在细胞间传递信息而促进肿瘤转移。上皮-间质转化(epithelial-mesenchymal transition,EMT)是肿瘤发生侵袭和向远端转移的关键步骤,外泌体可介导肿瘤细胞发生EMT,赋予细胞侵袭和迁移的能力。外泌体还可帮助肿瘤细胞逃避免疫监视,并促进形成转移前微环境,以接纳迁移和转移而来的肿瘤细胞。本文对外泌体通过促进EMT、调节免疫应答和促进转移前微环境形成等多重作用,而促进肿瘤细胞转移的研究进展作一综述。
标    签 肿瘤   外泌体   上皮-间质转化   肿瘤转移   肿瘤微环境   Neoplasm   Exosome   Epithelial-mesenchymal transition   Neoplasm metastasis   Tumor microenvironment  
 
Abstract
Carrying nucleic acids, proteins, lipids and other substances, the tumor microenvironment-derived and cancer-derived exosomes promote tumor metastasis through intercellular communication. These exosomes mediate epithelial-mesenchymal transition (EMT) of tumor cells, which is a key step in tumor invasion and distant metastasis. Exosomes also play important roles in creating tumor microenvironment to help tumor cells escape immune surveillance and to promote the formation of pre-metastatic niche for the engraftment of detached cancer cells. In this review, the progress in multifaceted roles of exosomes in tumor metastasis by inducing EMT, regulating immune response and promoting the formation of pre-metastatic microenvironment was discussed.

中图分类号 R73-37   DOI 10.3781/j.issn.1000-7431.2018.55.337

 
  购买该论文  中国光学期刊网论文下载说明
      


所属栏目 综述

基金项目 国家自然科学基金资助项目(编号:81272594);浙江省自然科学基金资助项目(编号:LY16H010004);浙江省医药卫生科技资助项目(编号:2017KY320)

收稿日期 2017/6/1

修改稿日期 2017/9/13

网络出版日期

作者单位点击查看


引用该论文: TIAN Yuxin,LU Yunbi. Multifaceted roles of exosomes in epithelial-mesenchymal transition and tumor metastasis[J]. Tumor, 2018, 38(2): 145~151
田雨鑫,卢韵碧. 外泌体在上皮-间质转化和肿瘤转移中作用的研究进展[J]. 肿瘤, 2018, 38(2): 145~151


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8(2):98-101.
 
【2】Gopal SK, Greening DW, Rai A, et al. Extracellular vesicles:their role in cancer biology and epithelial-mesenchymal transition[J]. Biochem J, 2017, 474(1):21-45.
 
【3】Zhang X, Tu H, Yang Y, et al. Mesenchymal stem cell-derived extracellular vesicles:roles in tumor growth, progression, and drug resistance[J]. Stem Cells Int, 2017, 2017:1758139.
 
【4】Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system[J]. Nat Rev Neurosci, 2016, 17(3):160-172.
 
【5】HRashed M, Bayraktar E, KHelal G, et al. Exosomes:from garbage bins to promising therapeutic targets[J]. Int J Mol Sci, 2017, 18(3):pii:E538.
 
【6】Donnarumma E, Fiore D, Nappa M, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer[J]. Oncotarget, 2017, 8(12):19592-19608.
 
【7】Shao Y, Shen Y, Chen T, et al. The functions and clinical applications of tumor-derived exosomes[J]. Oncotarget, 2016, 7(37):60736-60751.
 
【8】Dos Anjos Pultz B, Andrés Cordero da Luz F, Socorro Faria S, et al. The multifaceted role of extracellular vesicles in metastasis:Priming the soil for seeding[J]. Int J Cancer, 2017, 140(11):2397-2407.
 
【9】Syn N, Wang L, Sethi G, et al. Exosome-mediated metastasis:from epithelial-mesenchymal transition to escape from immunosurveillance[J]. Trends Pharmacol Sci, 2016, 37(7):606-617.
 
【10】Franzen CA, Blackwell RH, Todorovic V, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes[J]. Oncogenesis, 2015, 4:e163.
 
【11】Min H, Sun X, Yang X, et al. Exosomes derived from irradiated esophageal carcinoma-infiltrating T cells promote metastasis by inducing the epithelial-mesenchymal transition in esophageal cancer cells[J]. Pathol Oncol Res, 2017,[Epub ahead of print].
 
【12】Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis:yes, no, maybe?[J]. Curr Opin Cell Biol, 2016, 43:7-13.
 
【13】Burger GA, Danen EHJ, Beltman JB. Deciphering epithelial-mesenchymal transition regulatory networks in cancer through computational approaches[J]. Front Oncol, 2017, 7:162.
 
【14】Gregory PA, Bracken CP, Smith E, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition[J]. Mol Biol Cell, 2011, 22(10):1686-1698.
 
【15】Aga M, Bentz GL, Raffa S, et al. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes[J]. Oncogene, 2014, 33(37):4613-4622.
 
【16】You Y, Shan Y, Chen J, et al. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis[J]. Cancer Sci, 2015, 106(12):1669-1677.
 
【17】Jeppesen DK, Nawrocki A, Jensen SG, et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors[J]. Proteomics, 2014, 14(6):699-712.
 
【18】Kruger S, Abd Elmageed ZY, Hawke DH, et al. Molecular characterization of exosome-like vesicles from breast cancer cells[J]. BMC Cancer, 2014, 14:44.
 
【19】Cha DJ, Franklin JL, Dou Y, et al. KRAS-dependent sorting of miRNA to exosomes[J]. Elife, 2015, 4:e07197.
 
【20】Ung TH, Madsen HJ, Hellwinkel JE, et al. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways[J]. Cancer Sci, 2014, 105(11):1384-1392.
 
【21】Ramteke A, Ting H, Agarwal C, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules[J]. Mol Carcinog, 2015, 54(7):554-565.
 
【22】Kucharzewska P, Christianson HC, Welch JE, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development[J]. Proc Natl Acad Sci U S A, 2013, 110(18):7312-7317.
 
【23】Xue M, Chen W, Xiang A, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1[J]. Mol Cancer, 2017, 16(1):143.
 
【24】Tauro BJ, Mathias RA, Greening DW, et al. Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition[J]. Mol Cell Proteomics, 2013, 12(8):2148-2159.
 
【25】Gopal SK, Greening DW, Hanssen EG, et al. Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells[J]. Oncotarget, 2016, 7(15):19709-19722.
 
【26】Garnier D, Magnus N, Lee TH, et al. Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor[J]. J Biol Chem, 2012, 287(52):43565-43572.
 
【27】Garnier D, Magnus N, Meehan B, et al. Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state[J]. Exp Cell Res, 2013, 319(17):2747-2757.
 
【28】Kim J, Kim TY, Lee MS, et al. Exosome cargo reflects TGF-beta1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells[J]. Biochem Biophys Res Commun, 2016, 478(2):643-648.
 
【29】PASQUIER J, THAWADI HA, GHIABI P, et al. Microparticles mediated cross-talk between tumoral and endothelial cells promote the constitution of a pro-metastatic vascular niche through Arf6 up regulation[J]. Cancer Microenviron, 2014, 7(1-2):41-59.
 
【30】WHITESIDE TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes)[J]. Biochem Soc Trans, 2013, 41(1):245-251.
 
【31】Ye SB, Li ZL, Luo DH, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma[J]. Oncotarget, 2014, 5(14):5439-5452.
 
【32】Mrizak D, Martin N, Barjon C, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells[J]. J Natl Cancer Inst, 2015, 107(1):363.
 
【33】Clayton A, Al-Taei S, Webber J, et al. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production[J]. J Immunol, 2011, 187(2):676-683.
 
【34】Muller L, Mitsuhashi M, Simms P, et al. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets[J]. Sci Rep, 2016, 6:20254.
 
【35】Battke C, Ruiss R, Welsch U, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC[J]. Cancer Immunol Immunother, 2011, 60(5):639-648.
 
【36】Aung T, Chapuy B, Vogel D, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3[J]. Proc Natl Acad Sci U S A, 2011, 108(37):15336-15341.
 
【37】Chen Y, Xie Y, Xu L, et al. Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics[J]. Int J Cancer, 2017, 140(4):900-913.
 
【38】Wang X, Ding X, Nan L, et al. Investigation of the roles of exosomes in colorectal cancer liver metastasis[J]. Oncol Rep, 2015, 33(5):2445-2453.
 
【39】Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell, 2014, 25(4):501-515.
 
【40】Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6):816-826.
 
【41】Paggetti J, Haderk F, Seiffert M, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts[J]. Blood, 2015, 126(9):1106-1117.
 
【42】Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response[J]. Proc Natl Acad Sci U S A, 2012, 109(31):E2110-E2116.
 
【43】Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578):329-335.
 
【44】Lobb RJ, Lima LG, Moller A. Exosomes:Key mediators of metastasis and pre-metastatic niche formation[J]. Semin Cell Dev Biol, 2017, 67:3-10.
 
【45】张干, 刘彦龙, 杨艳梅, 等. 肿瘤衍生外泌体传递的微RNA在肿瘤进展中作用的研究进展[J]. 肿瘤, 2014, 345(12):1161-1163.
 
【46】Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells[J]. J Biol Chem, 2010, 285(23):17442-17452.
 
【47】Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity[J]. Proc Natl Acad Sci U S A, 2013, 110(43):17380-17385.
 
相关信息
   标题 相关频次
 缺氧微环境在肿瘤进展中的作用
 5
 肿瘤细胞亚克隆进化模式和影响因素的研究进展
 5
 EB病毒潜伏膜蛋白1介导的上皮-间质转化增强鼻咽癌的转移潜能
 4
 骨形态发生蛋白-2促进人肺癌细胞上皮-间质样转化及机制的研究
 4
 活化T细胞核因子与肿瘤发生和发展的研究进展
 4
 上皮-间质转化和胰岛素样生长因子Ⅰ型受体在非小细胞肺癌EGFR-TKIs获得性耐药中的作用
 4
 上皮间质转化与循环肿瘤细胞
 4
 微RNA-194参与结直肠癌细胞上皮-间质转化及迁移和侵袭的作用机制探讨
 4
 血小板C型凝集素样受体-2参与肿瘤血行转移的研究进展
 4
 EIF5A2基因在恶性肿瘤中的研究进展
 3
 Hedgehog信号通路与肿瘤侵袭转移作用的研究进展
 3
 miR-154-3p抑制非小细胞肺癌细胞转移的研究
 3
 PI3K/Akt/mTOR通路抑制剂依维莫司治疗晚期乳腺癌的
 3
 靶向肿瘤及其微环境:间充质干细胞介导的基因靶向治疗策略
 3
 叉头框Q1基因调控肿瘤发生和发展的研究进展
 3
 长链非编码RNA在肿瘤转移中的调控作用
 3
 常见消化道恶性肿瘤患者血清VEGF表达水平及其临床意义
 3
 电压门控性钠通道与肿瘤的研究进展
 3
 趋化因子CCL20与恶性肿瘤之间的关系
 3
 外泌体与肿瘤化疗耐药的研究进展
 3
 晚期糖基化终产物受体异常表达对肿瘤发生和侵袭转移的影响
 3
 抑制肿瘤转移的新策略——靶向肿瘤细胞的外渗过程
 3
 真核翻译延伸因子1A1在肿瘤发生和发展中作用的研究进展
 3
 肿瘤细胞发生细胞上皮-间质转变机制的研究
 3
 肿瘤相关微淋巴管内皮细胞的研究进展
 3
 肿瘤衍生外泌体传递的微RNA在肿瘤进展中作用的研究进展
 3
 肿瘤转移灶克隆形成机制的研究进展
 3
 EDN3基因抑制人乳腺癌细胞的迁移及侵袭
 2
 Sam68基因过表达可促进乳腺癌MCF-7细胞发生上皮-间质转化
 2
 TFPI-2基因表达变化与声门上喉癌侵袭转移及预后的相关性研究
 2

  热点专题


关于我们  |   联系我们  |   广告投放  |   《肿瘤》杂志社版权所有 《肿瘤》杂志社   © 中国 上海 2014.3
沪ICP备15036656号-2